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Classification of Nilpotent Lie Superalgebras of
Dimension Five. 11

Ahmad S. Hegazi'

Received April 4, 1999

In this paper a classification is made for all nilpotent Lie superalgebras (graded
Lie algebras) of maximum dimension five. The superversion of the Kirillov lemma
for nilpotent Lie superalgebra is given with its application to this classification.

1. INTRODUCTION

A Lie superalgebra L = Ly P L, is a superalgebra over a base field
K = Ror C with an operation [., .] satisfying the following axioms:

(i) [xo xp] = —(=1)*P [xp, xa].
(i) (—1)*[[x0 xp], %3] + (=)™ [[xp, 3], xa] + (= 1)"P[[xy, xa, xp]
=0,x0 € Lo, xp € Lp; 0, B € {0, 1} = Zs.

Ly is called the even part, and is a Lie algebra, and L; is called the odd
part, and is an Ly-module by restriction of the adjoint representation [1]. We
say that L = Ly & Ly and L' = L) b L] are equivalent if there are
isomorphisms Iy — Ly and L; — Li which preserve the bracket multiplica-
tion. We say also that L is trivial if [L;, Li] = {0}; otherwise L is nontrivial.
It is also worth noting that the structure constants of a trivial Lie superalgebra,
L say, can be interpreted as the structure constants of an associated Lie
algebra, L* say, provided that we replace the zero anticommutator of L by
the zero commutator of L*. However, under this correspondence, inequivalent
Lie superalgebras can lead to equivalent Lie algebras. Other departures from
ordinary Lie theory include the fact that Lie’s theorem is not valid, that
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Cartan’s criterion for simplicity only works in one direction, that there is no
obvious analog of Levi’s theorem, and that there can exist zero divisors in
the enveloping algebra [1, 5].

In the present work we give a classification of nilpotent Lie superalge-
bras, which are not Lie algebras, up to dimension five.

The classification of Lie superalgebras of dimension four does not
encounter any simple Lie superalgebras (the smallest simple Lie superalgebra
is of dimension five, the so-called di-spin algebra [5]) and all of these are
solvable [6-8, 11].

Let L = Ly b L be a Lie superalgebra, define a sequence of ideals of
Loy IV =L 1V =1L 1), 1% =L L), ..., " =[L L"Y]. Then a
Lie superalgebra L is called nilpotent if there exists i and LY = (0); i is
called the degree of nilpotency. An ideal 7 of L is a superideal if o(f) = I,
where G is an automorphism of L defined by c(xo + x1) = (xo — x1) for xo
(S Lo, x1 € L.

For a Lie superalgebra L, it is known that L is nilpotent if and only if
ad, 1s a nilpotent operator for all x € L, where ad is the adjoint representation
of L[1, 9]; it is also known that Engel’s theorem is valid, but Lie’s theorem
is not valid for nilpotent Lie superalgebra [1, 5]. Now we study the nilpotent
Lie superalgebra over K = R or C with dimension <5 and [L, L] # 0;
otherwise all results are trivial.

We tabulate the families of equivalence classes of the indecomposable
nilpotent Lie superalgebra of maximum dimension five (Table I). We say
that L = Ly B L, is an (m, n) algebra if dim Ly (resp. Li) is m (resp. n). For
the labeling of algebras, the letters 4, B, C, D, E with integral superscript i
denote equivalence classes of algebras of dimension d, d = 1 for 4, d = 2
for B, d = 3 for C, d = 4 for D, and d = 5 for E. The symbol L is the
associated Lie algebra when we take its structure constants as the structure
constants of the trivial Lie superalgebra and the superscript i is omitted
whenever its range is just the integer one [6—8]. L. represents the families
of the equivalence classes of the indecomposable nilpotent Lie superalgebra
of maximum dimension (m + n) < 5.

Proposition 1.1. Let L = Ly + L; be a Lie superalgebra of type (1,
n). Then:

(1) Either [Lo, Li] = (0) or [Li, Li] = (0).

(i1) L is nilpotent if and only if there exists a basis B, = By, U By, =
{xo} U {x%, X, x1} such that either [x’i, x’i] = a;xo0, a; € {—1, 0, 1] for
K=R a;, € {0,1} for K=C,i=1,2,...,n,and all other Lie products
are zero or the matrix representation of ady, has the Jordan form,
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Table 1.

Type L Characterization Relation Comments K

1,0 — — — — —

O, 1) 4 L =(0) b (x;), Trivial Equivalent to 4, ; R C
[x1,x1] =0 and abelian

(L, 1) (4y + 4 L= {(x) B ), Ly Nontrivial R C
[x1, x1] = xo

2,00 — L = {x0, yoy B0y — Abelian Lie algebra R C

0.2 — — — —

(3,0 — L = (x0, Yo, 20 B LBy Heisenberg Lie R C
0), [x0, Yol algebra
=z

2,1) QA1+ A L=<(x,y) P Derived from 1411‘1) Nontrivial R C
X [xX1, @] =
Xo, [Xo, yo] = 0

(1,2) C L={(0)y B, Ly Trivial R C
y1)s [xo, x1]
=N

(1,2) (g + 24" [x,x] = x0, b, Lo Nontrivial R C
nl = x

(1, 2) (Al.l + ZA)Z [xl, xl] = Xo, [yl, 1451‘2) Nontrivial R
nl = x

0, 3) — — — — —

4,00 — L= {(xo, yo, 20, Lo Lie algebra R C
Vo), [Xo, yo] =
20, [Xo0, Z0] = Vo

3, 1) (451 + A L = (xo, o, z0) b 1473‘1) Nontrivial Heisenberg R, C
x1), [X0, yo] = Lie superalgebra
2o, [x1, X1] = zo

2,2) (C+ A L = (x0, o) B (x1, Lo Nontrivial R C
i), [xo, x1] =
Y [x, x1] = yo

(2,2) A1y + 24" [x1, x] = x0, 11, Lo Nontrivial R C
il = yo, Ix1,
yl] = 1/2(’(()
+ o)

(2,2) (2415 + 247 [x1, x1] = x0, 1, LSy Nontrivial R C
il =y

(2,2) QA + 24 [x, x) = x. 1, Lbo Nontrivial R C
il = yo, [x1,
»nl = (xo = o)

(2,2) 2411 + 24" [x, x1] = x0, 1, L3y Nontrivial R C
il = yo, [x1,

il = xo
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Table I. Continued
Type L Characterization Relation Comments K
(1,3) D L=y B, L Trivial R C
i, 21, [x0, x1]
=y, [xo, yil
=7
(L3 (A + 34" [, x] =x. 1. Ly Nontrivial R C
nl = xo, [21,
Zl] = Xo
(1,3) (A + 347 [xi,x] =x0, 1, Liy Nontrivial R C
nl = xo, [21,
1] = Xo
0,4 — — — — _
5,00 — L = (%o, Yo, 205 Vo, L) Heisenberg Lie R C
wo), [Xo, yo] = algebra
wo, [20, Vo] =
wo
5,00 — [X0, yo] = vo, [xo, LiZo Lie algebra R C
Zo) = wo
(5,00 — (X0, o] = 2o, [x0, L3, Lie algebra R C
Zo] = vo, [Vo,
wol = o
(5,00 — [x0, Yol = z0, [%0, L{Z0) Lie algebra R C
Zo] = vo, [Vo,
Zo) = wo
5,00 — [x0, Yol = 20, [%0, L) Lie algebra R C
Zo] = vo, [Xo,
Vo] = wo
equivalent to
[xo0, yo] = wo,
[X0, Z0] = Yo,
[X0, vo] = 2o
5,00 — [x0, yo] = z0, [x0, Lo Lie algebra R C
Zo] = vo, [Xo,
Vo] = wo, [vo,
z0] = Wo
“4 1 E' L = (xo, Yo, 20, Vo) L&y Nontrivial R C
& (x1) [vo, yo]
= Xo, [Vo> 20] =
20, [X1, X1] =
Xo
4,1 E (X0, ol = Zo, [vo, Lii1) Nontrivial R C

Yol = Xo, [X1,
xl] = 2y
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Table I. Continued

Type L Characterization Relation Comments K

(3,2 E? L= (x0,y0, Zo) B LY, Trivial R C
(X1, Y1), [0,
Yo] = zo, [xo,
nl=x

(3,2 (EY [x0, Yol = z0, [x1, L2 Nontrivial Heisenberg R, C
x1] = zo, [y1, Lie superalgebra
»nl =z

(3.2 (EY [x0, Yol = z0, [x1, L>) Nontrivial R C
x1] = zo, V1,
nl = -z

(3,2) (E) [x0, Yol = zo, [x0, L2 Nontrivial R C
nl = x, b,
»nl =z

(2,3) (C+ 4)' L = {xo, o) B {x1, LS5 Nontrivial R C
Y1, 21)s [Xo, 1]
=x, Lyl =
Yo, [z1, z1] =
Yo

(2,3) (C+ 4? o, »i] = x1, 1, L33 Nontrivial R C
»nl = yo, [21,
2l = =

(2,3) A1y + 34" [x1, x1] = x0, 1, L35 Nontrivial R C
»il = yo, 21,
Zl] = X9 + Yo

(2,3) A1y + 34 [x, xi] = x0, 11, Lds) Nontrivial R C
»il = yo, 21,
1] = —(xo +
yo)

(2,3) A1y + 34 [x, xi] = x0, 11, L33 Nontrivial R C
»il = yo, 21,
z1] = Xo — »o

(2,3) A1y + 34" [x1, x1] = x0, 1, L33 Nontrivial R C
»il = yo, [x1,
zi] = o

(2,3) (2411 + 34° [x1, x1] = x0, 1, LY Nontrivial R C
»il = yo, [x1,
2] =x + 0

(2,3) Qdry + 34° [x, x1] = x0, 1, L) Nontrivial R C
] = yo, [x1,
z1] = Xo — »o

(2.3) QAuy + 34) [xnx] = xo v, LEy Nontrivial R C
z1] = yo, 1,
z1] = Xo

(2,3) A1y + 34° [xi, ] = x0, 1, Lds Nontrivial R C

zi] = yo
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Table I. Continued

Type L Characterization Relation Comments K
(1,4 E° L= (x) % (i, L Trivial R C
Y15 21, V1), [Xo,
il = xi, [xo,
Vl] = 1
(1,4 E° [x0, »] = x1, [vo,  Lita Trivial R C
z1] = 1, [Xo,
Vl] = 1
(1,4 (A, + 44" [xix) = x0 . L Nontrivial R C
nl = xo, [z1,
zi] = xo, [v1,
Vl] = Xo
(L4 (Ag +44° [x,x) =x. ., Lis Nontrivial R
nl = xo, [z1,
zi] = xo, [v1,
Vl] = —Xp
(L4 (Ag +44° [x,x) =x. ., Lis Nontrivial R
»nl = xo, [z1,
zi] = =xo, [v1,
Vl] = —Xp
- 0 1 0 . .. 0 0 -
0O 0 1 0 0
0O 0 0 0 .
1 .
0 .
. . . 1 0
0 0 0 O
0 0 0O 0 O
Proof. Since the Lie superalgebra L is of type (1, #), then
L (L, L] =0 -

[Lo, L] = [x0, L] = adxy(L1)

[L1, Li] = (x0)
The multiplication [L;, L;] can be given by a symmetric bilinear form, say
B(x1, y1) = a, hence [x;, y1] = Oxo. Assume that Ll‘ has the basis By, =
{xi, x1, ..., x1}. Then we can choose B such that B(x}, x{) = a5,
a; € {0, 1, =1} for K= R, a; € {0, 1} for K = C.
This means that [x}, xi] = a;xoand [x}, xi] = 0. Suppose that [Lo, Li] #
0. Then there exists an element xf such that [xo, X{] = /=1 ;x{ # 0.
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Suppose also that [L;, Li] # 0. Hence there exists an element x| such

that [xi, x] = *xo. From the Jacobi identity we have

[, ], 4] + [, X1, xi] + (] xiL xi] =0

Hence X/~ y;x1 = 0. This is a contradiction and we deduce that either [Lj,
Ll] =0 or [Ll, Ll] = 0.

(ii) Since [L, L] # 0, then we have ad,, # 0 or the symmetric bilinear
form B # 0.

If B # 0, then we get [L, [L, L]] = [L, xo] = 0 and L is nilpotent. If L
is nilpotent of type (1, ), then from (i) we deduce that [xi, xi] = a;xo.

If ad,, # 0, then ad,, is a nilpotent operator, since L is nilpotent. By
using a basis transformation of L; and the fact that ad,, has only zero
eigenvalue, one can put ady,(L) in the Jordan form.

If ady,(L1) has the Jordan form and L is of type (1, n), then one can see
that L is a nilpotent Lie superalgebra by direct calculations.

2. SUPERVERSION OF KIRILLOV LEMMA

Let us consider a nilpotent Lie algebra G with one-dimensional center,
in which Heisenberg Lie algebra H exists as a subalgebra with the same
center C(G) = C(H).

Lemma 2.1. Let G be a nilpotent Lie algebra with one-dimensional
center, dim G = 3. Then G is decomposable into the subspaces X, Y, Z, and
W such that:

OG=XFEYEZEBW
(i) dim X = dim ¥ = dim Z = 1.
(iii) If X = (x), Y = (), Z = (), then

[x, y] = z, [y, w] =0, forall we W

Proof. Since G is a nilpotent Lie algebra, then there exists n € N such
that G =[G, G" D] = 0, G"V # 0. It is clear that G" ™" C C(G); then
it follows that GV = C(G). We put C(G) = Z = (z). Lety € G" 2\G" ™,
y # 0. We put Y = (). Since G is nilpotent, there exists x € G with [x, y]
=z Weput X =(x). Itisclearthat XnY =(0), Y nZ=(0),and X Z
= (0). We consider W = {g: g € G, [y, g] = 0}. W is a Lie subalgebra of
G. Itisclearthat Y C W, ZC W. Thus W =Y & Z & W, where W is a
certain vector subspace of G. Since x & W, then X n W = (0) and we have

XBYdzZzEWCa
Letg € G, [g, y] = 0.z then [g — o, y] = 0, so g — ox € W. Thus
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g =ox + wand it follows that G C X Y B Z L W. Thus G = X B Y
cZEwW
Remark. We have the following results:

i) X+Y+2

’

S
\<l\l

0 o0
0 0

4

X, pz€ km=3

o 0 0 0 0 0 0 O

m.m

\
(ii) G' =X P Y P ZisaLie subalgebra of G with minimal dimensior{
such that C(G) € G’ and C(G) = C(G").
(ili) G’ = XPY B Zis the minimal dimensional Lie subalgebra (dim
G' = 3) with (1) C(G) € G', C(G) = (z) and (2) there exist x € G, y €
G’ such that [x, y] = z.

Let L = Ly b L, be a nilpotent Lie superalgebra over R or C with one-
dimensional center = Kz, where z is an even element. Then we have the
following result.

Lemma 2.2. (1) L decomposes into the subspaces X = (x), Y = (y), Z =
(z), and W.

(ii) x, y are homogeneous of the same parity, [x, y] = z and [y, w] = 0.

(iii) W is a superideal of codimension one, W =ZBY B W, L= W % Kx.

Proof. Let h/Z be the center of L/Z and let y be a homogeneous element
of 1\Z which does not belong to Z. For all u € L, we have [u, y] = p(u).z,
where pe L* and L* is the dual space of L. We have L # 0 since y ¢ Z,
hence we can find an element x which is homogeneous of the same parity
as y such that p(x) = 1. Now the centralizer W of Y in L, namely Ker p, is
of codimension one in L. Since L is nilpotent, ¥ is an ideal.

From remarks (ii) and (iii) we have the following questions.

1. What are the types of minimal dimensional Lie super subalgebra L' C
L with (i) C(L) € L', (i) C(L) = C(L')?

2. (i) What are the types of minimal dimensional Lie super subalgebra
L' C Lwith C(L) € L', C(L) = {c)? (ii) Do there existx € L', y € L' such
that [x, y] = ¢?

In the first question we must have C(L) = C(L'), but in the second
question we want C(L) & C(L')
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Unfortunately, we do not have a satisfactory answer for the first question.
Let us assume that C(L) = {¢) and dim L'<5; then we have the following
question. Let L be a nilpotent Lie superalgebra with dim C(L) = 1, C(L) =
{¢). (1) What are the types of minimal dimensional Lie super subalgebra L' C
L with C(L) € L'? (ii) Do there exist x € L', y € L' such that [x, y] = ¢?

(iii) dim L' < 57

Since L is nilpotent, so is L' and since L’ is minimal dimensional, then
L' can only be of the type L1y to L{f4 (see Table II). From (ii) it follows
that {(¢) C [L', L']; since C(L) is a super subalgebra of L, then either ¢ € Lo
or ¢ € Ly, and we write C(L) = {co) or {cy).

Remarks. 1. Type 6 exists only for K = R, types 1-5 exist for K =
Ror C.

2. The type of the minimal Lie superalgebra L' is well determined
(unique) except for type 6. Type 6 is connected with type 5; if we have a
minimal Lie super subalgebra L’ of type 6, we find a minimal Lie super
subalgebra L' of type 5.

3. Intypes 1, 2, and 3 we have C(L) = C(L') and types 2 and 3 regardless
of the grading are isomorphic to the classical Heisenberg Lie algebra.

Proposition 2.3. Let L be a nilpotent Lie superalgebra over K = R or
C with dim L = 2, C(L) = {¢) # (0). (i) There is a minimal dimensional
Lie super subalgebra L' of L with C(L) C L'. (ii) There exist x € L', y €
L’ such that [x, y] = ¢ is one of the following types:

1. L' = <C0> 5% <X1>, [X1, X1] = Co.
L' = (xo0, o, co), [X0, yo] = co.
L = <X0> 5% <X1, C1>, [Xo, Xl] = C].
L = <X0, y0> 5P <X1, C1>, [Xo, Xl] = i, [Xl, Xl] = Jo.
L = <X0, C0> 5% <X1, y1>, [X1, y1] = Co, [X1, X1] = Xo.
L' = {xo, coy B {x1, y1), [x1, y1] = co, 1, 1] = X0, [x1, X1] = X0.

SAIRANE ol

Proof. Since L is nilpotent, then there exists n € N such that L") = L,

[P =L 1), ...., " Y =L "] # (0), L™ = (0). It is clear that
LY C C(L) and since dim C(L) = 1, then LV = C(L) = (c). Suppose
first that ¢ = ¢o € Ly and let y € (L ?L" V) # (0). We assume y = yy €
L', Since yo & C(L), then [L, yo] C L”V = (co), and there exists xo €

Lo with [xo, yo] = co. Thus L = (xo, yo, co) is of type 2.

Let us now consider y = y; € L{""?. Since y; ¢ C(L), then [L, yi] C
LY = (¢o), and there exist x; € Ly with [x1, y1] = co. If x1 = Ay (we take
A = 1), then L = {co) P (x1) is of type 1. If x; # Ayy, then [y1, y1] = Peco
(B=1)and L' = {co) P {y1) is of type 1.

Let us assume that [y, y1] = 0, [x1, x1] = 0. Then it follows that [1/2
xi + y, U2 x1 + y1] = coand L' = {co) B (1/2 x1 + y1) is of type 1.
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L

Relations

K

Type

1411.1)

1423.0)

1431.2)
1441.2)

1451.2)
1464.0)

1473.1)

Ly

Liy

[1411‘1), 1411‘1)] = <X()> —> X0 — }\,C(); without loss of
generality we take A = 1, L = {co) b
X1, [x1, x1] = ¢o

[L&oy, Liso) = (20), co =20 > L' =
(X0, Yo, Z0), [Xo0, o] = co

co = )1 —>L = <X()> + <X1, L‘1>, [X(), xl] = (]

co = xo > L = (co) b {x1) is a minimal
subalgebra

Analogous to 1441‘2)

co = Ovy + BZ() > L= <X(), By() + oz, C()) isa
minimal algebra since [xo, 0z + Byo] = co

co = zop = L" = {x0, yo, coy is a minimal subalgebra
(L' = {co) P (x1) is also a minimal subalge-
bra) R, C

[Lb2), Lbo)] = o)  ()s if yo = co, then L' =
(coy B {x1) is minimal; if y; = ¢;, so is L' =
(x0, oy B (x1, 1) with [xo, x1] = ¢1 [x1, x1] = o

[L?z‘z), L?z‘z)] = (X0, yoy; we use the equivalent
form of 1492‘2), i.e., [xl, xl] = Xo, [yl, yl] :0,
[x1, 1] = yo; if we take ¢o = axp + Byo, . F
0 — L' is not minimal dimensional; L" =

(coy B ( \f—l x; + \_;—% ) is minimal for k =

Ci L' = ey & (= o] v + (B2 \ﬂ)yl)
is mlmmal for K = R; if xo = ¢co — L' is also
not minimal, let yo = co = L' = {(x0, co) b
{x1, y1y with [x1, x1] = X0, [x1, 1] = ¢o

(L), LiZs)] = (X0, yo); ¢o = 0xg + Bpog > L' is
not minimal (if @ = 0 or B = 0, then L’ is
not minimal); for K = C, L' is not minimal;
for K= Rand a.p <0, (0.p >0 —> L is
not minimal) take o >0, B < 0; then we
denote X] = B Y1, X() = Oxy +

}B Yo, y1 = \,‘1’61 - yl,yo = Oxp —
Bl yo = axo + Byo = Co, [x1, y1] = co,

[xt, x1] = x0, V1, y1] = xo0; thus L' = {x, co)
& (x1, y1)y with [x1, y1] = co, [x1, x1] = Xo,
] = xo

[14121‘2), 14121‘2)] = (X0, Yoy; we use the equivalent
form of 14121_2), i.e., [xl, xl] = Xo, [yl, yl] =
X0, [xl, yl] = Yo, €o = OXxo + By() — L' is not
minimal, for example, if f =0 > L' =
(coy P (x1) is minimal
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Table II. Continued

r Relations K Type
L3 Analogous to L{3 5
Ly L), L] = G, zi); 1 = apy + Bz > L' = R C —

(xo) B (0x; + By, 1) is minimal

14114_3) Analogous to 1441_2) _ _
14115_3) Analogous to lfl_g) — _
1415"_0)714251_0) Analogous to lf4_o) _ _
lff_l) Analogous to 1473_1) — _
5 Analogous to L) _ _
lff_z) Analogous to lfz_g) — _
L(235_2) Analogous to L?l_z) — _
1423(’_2) Analogous to lfl_g) — _
14237_2) Analogous to Lfgz_z) — _
14228_3) Analogous to lfz_g) — _
lff_,x) Analogous to Lfgz_z) — _
143{]_3) Analogous to 1412_2) _ _
lf{_y Analogous to L(lg_z) — _
lfzz_,x) Analogous to 1412_2) _ _
14323_3) Analogous to L(lg_z) — _
lf{'_;) Analogous to 14121_2) _ _
14325_3) Analogous to L(lzl_z) — _
143{’_3) Analogous to 1412_2) _ _
14327_3) Analogous to 1412_2) _ _
Ly Analogous to L{fs — —
14319_4) Analogous to 14112_3) — —
Ly Analogous to L} s — —
14411_4) Analogous to 14113_3) — —
Lty Analogous to L} s — —

Suppose also that [y1, yi] = 0, [x1, x1] = xo F 0. Since [[x1, x1], x1] = 0, so
is [xo, x1] = 0. Take xo = —Aco (A = 1); then L' = {co) P (x1) is of type 1.
Now since [xo, y1] € L" ™" = (co), we get [xo, 1] = 0 and L' = (xo, coy P
{x1, y1) is of type 5.

Second, consider ¢ = ¢; € Ly and let y € (L"2L" D) # (0), y = »
€ L" Y. Since y, & C(L), then [L, y1] C L") = (¢}), and there exists xo €
Ly with [xo, y1] = c1. We have [xo, x1] = 0, [y1, y1] = 0, since [y1, y1] €
LY = (¢1). Thus L' = (xo) B (1, 1) is of type 3.

Suppose that y = yo € L§" . Since yo ¢ C(L), then [L, yo] C L") =
(c1) and there exists x; € L-; with [x1, yo] = c¢1. Now, [x1, x1] = 0, so we
get L' = (yo) B (x1, 1) which is of type 3. Assume that [x;, x;] = xo # 0.
We have [yo, yo] = 0 and xo # Ayo, since [[x1, x1], x1] = [x0, x;] = 0. On
the other hand, [xo, yo] € (co), which implies that [xo, yo] = 0. Thus L' =
(x0, yoy B {x1, c1) is of type 4.
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Remarks. 1. All subalgebras L’ are nonsimple, since the minimal dimen-
sional simple Lie superalgebra is of dimension 5 [6].

2. We have seen that the nilpotent Lie superalgebra L has L' subalgebra
of type 1, 2, 3, 4, and 5. The dimension of a minimal L’ cannot exceed 4,
and with this technique we cannot find a minimal L’ of L!

3. If L' is minimal of type 6, we can find at most an L” of type 4 or 5,
but since in type 6 we have ¢ € Ly and in type 4 we have ¢ € L;, we deduce
that L” is of type 5. Moreover, if the minimum dimension is 2, then L’ is of
type 1, and if the minimum dimension is 3, then L’ is of type 2 or 3, but ¢
is homogeneous of different degree in types 2 and 3. Thus we have only one
type 2 or 3. Analogous reasoning for dimensions 4 and 5 and gives only one
of type 4 or 5.

4. Heisenberg Lie superalgebra is a nilpotent Lie superalgebra with one-
dimensional center which has no L'.

APPENDIX

Here I outline the arguments used in obtaining the classification table.
I take as an example the nilpotent Lie superalgebra of type (2,2) to represent
the technical arguments which are used to obtain the classification table.

Choose L = Lo = {xo, o) B (x1, y1). Since L is nilpotent, then L, is
also a nilpotent Lie algebra of dimension 2. This implies that [Lo, Lo) = 0.
The dimension of [Ly, L;] must be <1 otherwise [Ly, Li] = L; and L is
not nilpotent.

Take dim [Lo, Li] = 1; without loss of generality [Lo, Li] = (1) —> [xo,
xi] = y1, [yo, x1] = i, [xo0, ;1] = 0, [yo, ] = 0, otherwise [Lo, [Lo, Li]]
= [Lo, L] and L cannot be nilpotent.

Without loss of generality we can take o0 = 0; otherwise we take the
basis xp = xp and y§ = Oxp — yo.

From the Jacobi identity we get

0 = [[xo0, x1], y1] + [[x1, y1], x0] — [[v1, Xo], x1]
=yl =bunl =0
0 = [[xo0, x1], x1] + [[x1, x1], x0] — [[x1, Xo], x1]
=2, x1] =, x] =0
[[x1, x1], x1] = [oxo + Byo, x1] = o1 = [x1, x1] = PByo

If B = 0, we have L with [xo, x;] = y;, which can be derived from
L(SI,Z)-

If B = 1, then the nilpotent Lie superalgebra L = L, is given by
[x0, X1] = y1, [x1, x1] = yo. This is the nilpotent Lie superalgebra L5:5).
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Assume now that
dim [Ly, Li] = 0 = [L, L] = [Li, Li] C Ly = dim[Li, Li] € {1, 2}

Take dim[Ll, Ll] =1= [Ll, Ll] = <X0>. We have L with [Xl, Xl] = Xo, which
can be derived from L{j;) or L with [xi1, x1] = xo, [y1, y1] = xo, which can
be derived from L{1.,), or L with [x1, x1] = Xo, [y1, ¥1] = —Xo, which can be
derived from L, 7).

Take dim[Ly, Li] = 2 = [Li, Li] = {(xo, yo) = {[x1, x1], [y, y1l, [x1, »1])
and we continue the technical arguments to get l(gz,z), L(%), L(lzlm, and L(122,2>.
The final results are given as follows:

Lemma. Let L be a nilpotent Lie superalgebra of type (2,2) with the

basis (xo, yo, x1, y1) and [x1, x1] = X0, [V1, 1] = yo, [x1, y1] = oxo + PByo;
then for K = R

L= L(gz,z) for (X.B =

E o

L= L(lg,z) for OL.B < i

1
L= L(lzl,z) for OL.B >~

4
and for K = C
L= L(gz,z) for (X.B = i
— 10 l
L= L(z,z) for OL.B * 4
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